
 

 

 

 
Course Name: Scalable Data Science  

 

Course Number: CS-563  

 

Credits: 3-1-0-4  

 

Prerequisite: Data Structures and Algorithms (CS202), Probability, Statistics and Random 

Processes (IC210),  Algorithm Design and Analysis (CS403).  

 

Students intended for: B.Tech.(3rd/4th year)/M.S./Ph.D.  

 

Elective or Core: Elective. 

--------------------------------------------------------------------------------------------------------------------- 

 
Preamble: Recent advancements of the WWW, IoT, social networks, e-commerce, etc. have 

generated a large volume of data. Algorithms that help in gaining insights in order to make wiser 
decisions in large data sets are ubiquitous in several applications. Many naive algorithmic 

techniques may not be able to cope up with such a large volume of data by: a) running out of 
memory, and b) having a large running time. This course attempts to address these challenges by 

a) offering scalable algorithms, b) reducing the size of the data set such that the result of an 
algorithm on the reduced datasets is very close to its result on the original dataset. Algorithms 

covered in the course fit well in the intersection between theory and practice, and have 
guarantees on their accuracy and efficiency, and can be easily implemented.  

 
Learning outcome: Topics covered in the course are fundamental subroutines (or sub-problems) 

that are required to build large scale systems. After taking this course, students will become 
familiar with their classical as well as state-of-the-art algorithms. They will have a theoretical 

understanding of the algorithms along with their practical implementation. 

 

Course Modules:  

 

1. Dimensionality reduction algorithms: Johnson-Lindenstrauss Lemma; Random 

Projections; Spectral Projection, and their applications [5].                (4 hours) 

 

2. Sketching algorithms for large data stream: Reservoir sampling; Frequent element 

detection – Misra Gries algorithm; probabilistic counting – Flajolet and Martin Sketch; 

Set membership problem – Bloom filters and Cuckoo filters; Frequency estimation– 

Count Min- Sketching [8, 5].                   (7 hours) 

 

3. Algorithm for large scale search: Introduction to Locality Sensitive Hashing (LSH) and 

its variants: LSH for Jaccard Similarity – Minwise Independent Permutations (MinHash) 

[6] and its recent advancements (b-bit MinHash [14], One Permutation Hashing [15]); 

LSH for Cosine Similarity – Signed Random Projections (SimHash) [7]; LSH for 

Euclidean Distance [12]; LSH for Hamming distance [10].                (8 hours)  
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4. Application of LSH: Faster duplicate detection, clustering the web, large scale itemset 

mining, model compression.                   (3 hours) 

 

5. Mining massive graphs and applications: Algorithms for page rank; community 

detection; finding overlapping communities and connected components; partitioning of 

graphs; counting triangles. Learning embedding of nodes with applications in link 

prediction, node classification.                        (7 hours) 

 

6. Clustering algorithms for large data: Sampling algorithms for k- means clustering – k-

means++ [1], scalable k-means++ [2]; spherical k-means clustering [9]; k-mode 

clustering [11]; spectral clustering [5].                             (6 hours)  

 

7. Miscellaneous Topics: Learning representation of text – word2vec [16, 13] and images – 

spectral hashing [17, 5] and its connection with Matrix Factorization; Topic modelling 

and Topic labelling [4, 3]; Building Recommendation System – a) Collaborative 

Filtering, b) Content based recommendation.                                        (7 hours)  

 

 

Similarity Content Declaration with Existing Courses: Following consists of a comparison 

between the proposed course and existing courses CS-561 (MapReduce and Big Data) and CS-

660 (Data Mining and Decision Making).  

 

1. CS-561 is more of a hands-on course which provides a thorough understanding of the 

MapReduce paradigm, and implementation of various algorithms on Big data platforms. 

However, scope of the proposed course is different and focuses on developing simple and 

practice algorithms with provable performance guarantees for several fundamental data 

science problems. 

2. There are some intersections between the CS-660 and the proposed course on topics such 

as: a) Clustering, b) Principal Component Analysis, c) Association Rules. The 

intersection is less than 20%. Furthermore, the approach of covering these topics in CS-

660 is different as compared to the proposed course. For these topics heuristics are 

covered in CS-660, while in the proposed course algorithms with provable guarantee on 

their accuracy and efficiency will be covered.  
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