Approval:10th Senate Meeting

Course Name: Pattern Recognition

Course Number: CS669

Credit: 3-1-0-4

Prerequisites: IC

Students intended for: MS/Mtech/PhD/3rd and 4th year BTech

Elective or Compulsory: Elective

Semester: Odd

Course Modules:

1.	Ba	sics of Probability, Random Processes and Linear Algebra (recap)	[8 hrs]
	•	Probability: independence of events, conditional and joint probability, Bayes'	theorem
	•	Random Processes: Stationary and nonstationary processes, Expectation,	
		Autocorrelation, Cross-Correlation, spectra.	
	•	Linear Algebra: Inner product, outer product, inverses, eigen values, eigen ver	ctors,
		singular values, singular vectors.	
		ogramming Assignment 1	
2.	Ba	yes Decision Theory	[8 hrs]
	•	Minimum-error-rate classification	
	•	Classifiers, Discriminant functions, Decision surfaces	
	•	Normal density and discriminant functions	
	•	Discrete features	
3.	Pa	rameter Estimation Methods	[12 hrs]
	•	Maximum-Likelihood estimation: Gaussian case	
	٠	Maximum a Posteriori estimation	
	•	Bayesian estimation: Gaussian case	
	•	Unsupervised learning and clustering	
		 Criterion functions for clustering 	
		— Algorithms for clustering: K-Means, Hierarchical and other methods	
		— Cluster validation	
	•	Gaussian mixture models	
	•	Expectation-Maximization method for parameter estimation	
	•	Maximum entropy estimation	
		ogramming Assignment 2	
4.		equential Pattern Recognition	[4 hrs]
		Discreat Time Warping (DTW)	
	•	Hidden Markov Models (HMMs)	
		— Discrete HMMs	
	л	- Continuous HMMs	
5		ogramming Assignment 3	[1 hm]
э.	INO	nparametric techniques for density estimation Parzen-window method	[4 hrs]
	•		
	•	K-Nearest Neighbour method	
6.	Dir	mensionality reduction	[4 hrs]
	•	Principal component analysis – it relationship to eigen analysis	
	•	Fisher discriminant analysis – Generalised eigen analysis	

• Eigen vectors/Singular vectors as dictionaries.

7.	Linear discriminant functions	[8 hrs]
	Gradient descent procedures	
	• Perceptron	
	Support vector machines	
8.	Non-metric methods for pattern classification	[4 hrs]
	Non-numeric data or nominal data	
	• Decision trees: Classification and Regression Trees (CART).	
	Programming Assignment 4/Project	
Text E	Books:	

- [1] R.O.Duda, P.E.Hart and D.G.Stork, Pattern Classification, John Wiley, 2001
- [2] S.Theodoridis and K.Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009

[3] C.M.Bishop, Pattern Recognition and Machine Learning, Springer, 2006

References:

- [1] Some relevant papers/notes will be put up on the website from time-to-time.
- [2] Simon Haykin, "Neural Networks: A Comprehensive foundation to Neural Networks or Neural Net-works and Learning Machines," any edition will do.